Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes.
نویسندگان
چکیده
The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp)) or 3 base pairs (Oct4/Sox2(3bp)) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox2(0bp) and Oct4/Sox2(3bp) complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.
منابع مشابه
DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy.
Oct4 and Sox2 are two essential transcription factors that co-regulate target genes for the maintenance of pluripotency. However, it is unclear whether they interact prior to DNA binding or how the target sites are accessed in the nucleus. By generating fluorescent protein fusions of Oct4 and Sox2 that are functionally capable of producing iPSCs (induced pluripotent stem cells), we show that th...
متن کاملDissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency
The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducin...
متن کاملSox2 Uses Multiple Domains to Associate with Proteins Present in Sox2-Protein Complexes
Master regulators, such as Sox2, Oct4 and Nanog, control complex gene networks necessary for the self-renewal and pluripotency of embryonic stem cells (ESC). These master regulators associate with co-activators and co-repressors to precisely control their gene targets. Recent studies using proteomic analysis have identified a large, diverse group of co-activators and co-repressors that associat...
متن کاملCrystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers.
Members of the POU and SOX transcription factor families exemplify the partnerships established between various transcriptional regulators during early embryonic development. Although functional cooperativity between key regulator proteins is pivotal for milestone decisions in mammalian development, little is known about the underlying molecular mechanisms. In this study, we focus on two transc...
متن کاملCore transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination
Embryonic stem (ES) cells have therapeutic potential in regenerative medicine, although the molecular mechanism controlling their pluripotency is not completely understood. Depending on interaction partners most proteins can be involved in several different cellular mechanisms. We screened for novel protein-protein interactions using in situ proximity ligation assays together with specific anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2016